
1

Towards a scalable refereeing system for online

gaming
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Abstract—Refereeing for Massively Multiplayer Online Games
(MMOGs) currently relies on centralized architectures, which
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I. INTRODUCTION

Massively Multi-player Online Games (MMOGs) aim at

gathering an infinite number of players within the same virtual

universe. Yet among all of the existing MMOGs, none scales

well. By tradition, they rely on centralized client/server (C/S)

architectures which impose a limit on the maximum number

of players (avatars) and resources that can coexist in any given

virtual world [1]. One of the main reasons for such a limitation

is the common belief that full decentralization inhibits the

prevention of cheating.

Cheat prevention is a key element for the success of a game.

A game where cheaters can systematically outplay opponents

who follow the rules will quickly become unpopular among

the community of players. For this reason, it is important for

online game providers to integrate protection against cheaters

into their software.

C/S architectures provide good control over the computation

on the server side, but in practice they are far from cheat-

proof. A recent version of a popular MMOG, namely Diablo

3, fell victim to an in-game hack that caused the game’s

shutdown for an entire day [2]. Not so long ago, someone

found a security breach in World of Warcraft [3] and proceeded

to disrupt the game by executing admin commands. Given

that centralized approaches are neither flawless security-wise

nor really scalable, obviously there is room for improvement.

Cheating and the issues it raises for both centralized and

decentralized approaches are discussed further in Section II.

This paper presents a scalable game refereeing architecture

that monitors the game both efficiently and securely. Our

contribution uses a peer to peer (P2P) overlay to delegate game

refereeing to the player nodes. It relies on a reputation system

to assess node honesty and then discards corrupt referees and

malicious players, whilst independent processes in the game

challenge nodes with fake game requests so as to accelerate

the reputation-building process.

This paper is organized as follows. Section II makes a case

for decentralized architectures as building blocks for game

software, and then details our system model and failure model.

Section V depicts our main contribution: a decentralized

approach for game refereeing that scales easily above 30,000

nodes and allows detecting more than 99.9% of all cheating

attempts, even in extremely adverse situations. Section VI out-

lines the characteristics of the reputation system our solution

requires in order to achieve such performance, and details the

simple reputation system we designed following this outline.

Finally section VII gives a preliminary performance evaluation

obtained by simulating our solution.

II. THE APPEAL OF DECENTRALIZED ARCHITECTURES FOR

ONLINE GAMES

Scalability is a crucial issue for online games. As mentioned

earlier, the current generation of MMOGs suffers from a limit

on the size of the virtual universe. In the case of online role-

playing games, the tendency is to team up in parties to improve

the odds against other players and the game itself. Being

unable to gather a party of avatars in the same virtual world

because there are not enough slots left on the server is a fairly

frequent cause for frustration among players. The limitation

on the scale also has consequences on the size and complexity

of a virtual world. Players usually favor games that offer the

largest scope of items/characters they can interact with.

The lack of scalability in the current trend of online games

is mainly due to their C/S architecture [1]. Although the server

may be a virtual entity composed of multiple physical nodes,

its capacity remains the main limitation in terms of data stor-

age, network load, and computation load. To compensate for

this, game providers create multiple universes, either partitions

of a global universe (like Second Life islands) or parallel

universes (like World of Warcraft realms). Each universe gets

hosted on its own separate cluster of servers. At great cost,

this does increase the overall number of concurrent players,

but it still does not allow in-game interactions between two

players evolving in separate universes. To give some idea of
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the magnitude of this problem, unofficial sources estimate the

maximum number of avatars per World of Warcraft server to

be around 15,000 at the launch of the game, 60000 nowadays

with the evolution of the computing power[4]; the total number

of World of Warcraft players reaches beyond 11,000,000. In

this number of possible players on a server, only a few part

will be logged in at the same time, creating an average of

1,500 concurrent players on a server dimensioned for 60,000

accounts[5]. Since the number of virtual resources with which

players can interact is also limited by the capacity of the

servers, creating multiple universes does not allow to enhance

the richness and complexity of the virtual world either.

Decentralized architectures usually scale far better than C/S

architectures. They remove the limitations on the number of

concurrent players and on the complexity of the virtual world,

or at least relax these limitations significantly.

Cloud deployment is a step towards decentralization and a

growing trend within the digital games industry {ICI PLEIN

DE REFS}. Cloud gaming extends the traditional C/S cluster-

based approach and allows dynamic provisioning of server re-

sources. Additionally, it can help alleviate the computing load

on the client side by running all computations on cloud servers

and streaming the resulting video feed. The work presented

in this paper focuses on a fully decentralized approach over

P2P overlays, but it is adaptable to cloud gaming. Section III

discusses the portability of our solution to clouds.

One solid argument against full decentralization is that cheat

detection is very hard to enforce in a distributed context, and

it may thus be less effective.

In a C/S architecture, the server side acts as a trustworthy

referee as long as the game provider operates it. Let us take

an example of a player who tampers with his software copy to

introduce illegal movement commands. This provides an unfair

advantage to the cheater as his avatar then acquires the ability

to instantly reach places where it cannot be attacked. All it

takes for a centralized server to set things right is to check

every movement command it receives from player nodes. Such

a solution will have a strong impact on the performance of

the server, and especially on its ability to scale with respect

to the number of concurrent avatars. It is possible to reduce

the computational cost of this solution by skipping checks of

the received commands. However, it entails that some cheating

attempts will succeed eventually.

There are also cheating attempts that a C/S architecture is

ill-fitted to address. A player about to lose can cancel a battle

by launching a DDOS attack (distributed denial-of-service [6])

on the server and causing its premature shutdown. A decen-

tralized architecture would be far more resilient against such

an attack.

In a decentralized architecture, it is not easy to select

which node or set of nodes can be trusted enough to handle

the refereeing. For instance, let us roll back to the example

where a player node sends illegal movement commands. A

naı̈ve approach could be to delegate the refereeing to the

node of the cheater’s opponent. Unfortunately this would

introduce a breach: any malicious player node could then

discard legitimate commands to their own advantage. As a

matter of fact, delegating to any third party node is particularly

risky: a malicious referee is even more dangerous than a

malicious player.

Reaching a referee decision by consensus among several

nodes boosts its reliability. Since it is both hard and costly for

any player to control more than one node, the trustworthiness

of a decision grows with the number of nodes involved. On the

other hand, involving too many nodes in every single decision

impacts heavily on performance. Even in a P2P context with

no limit on the total number of nodes, waiting for several

nodes to reach a decision introduces latency.

In this paper, we present a fully decentralized approach

which delegates referee decisions to player nodes. It picks

referees on the basis of their reliability, the latter being

assessed by means of a reputation system. We also detail our

experimental results, which show that a simple vote among

a small number of referees increases the trustworthiness of

decisions significantly without impeding the scalability of the

system.

III. CLOUD GAMING ARCHITECTURES

Cloud gaming architectures may be handled in two major

different ways :

• streaming games to the user device

• using the cloud as resources

Streaming games, what is called the ”cloud gaming”, with

companies such as [7] allows users to play a big collection

of games in exchange of a monthly fee. Nvidia tried to

join the cloud gaming services industry by offering his own

Nvidia computing grid [8] and also proposed a similar android

application to its latest handled device. The Nvidia shield can

receive content directly from the home computer and later

on will be able to receive from the Nvidia grid[9]. There is

a strong tendency to move towards the cloud gaming as a

streaming service[10].

All those services of cloud gaming relies on a highly capable

gaming computer running the game and streaming its content

to the user from the company datacenter. This allows tablets,

smartphones and small computing power devices to handle

higher quality games without efforts. As long as the user stays

connected with sufficient bandwidth, he will be able to play

any game he wants.

As for using the cloud as available resources, it is hard

to know exactly where gaming companies store their servers.

Most of the time though, when a problem or a new feature

appear in a gaming platform, the term of data center appears

[11]. We can then guess that nowdays, a vast majority of games

still rent some rooms to store servers per region to have a total

control on the machines and get the best latency possible for

the users.

Cloud resources are then used to lower the stress and

bandwidth requirements made by the game itself. Recently,

Dota 2 developers admitted that pushing an update for their

games generates then two percent of the overall network

traffic of the world[12]. It is clear that a company cannot

output by itself such quantity of information to each user

and therefor push this update to cloud service to unload the

stress. Microsoft new console XboxOne will ensure that every
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XboxOne released will have the equivalent of two times its

computing power in the cloud to allow complex computation

in games[13] , showing the growing will to use the cloud as

a matter of gaming enhancement.

It is then truly easy to integrate a cloud component to

our solution. By injecting the cloud service informations as

possible referees for player nodes in the game code, our

solution will automatically discover the cloud service.

Using cloud services as always on, always available referees

will give our system a trusted entity we could always refer

to in case of doubts. It will also allow our system to start

immediately as there will be no need in the early beginning to

firstly identify possible referees. When the cloud service will

be filled with players making fights, our reputation system will

be used to then assess the nodes reliableness and use them as

available resources that will help us scale without limits. We

could later on decide to shutdown the cloud service and let

the peer to peer system handle itself.

Even though being then affordable for some users who can’t

buy a gaming computer, streaming services add latency and

the bandwidth limitation of the user makes it challenging.

Exploration games are easily compatible with this kind of

gameplay, but multiplayer games like we aim at raise also

a confidentiality issue : the user need to send his online

username and password to a cloud service that might run other

software concurrently. Even though isolation is supportingly

ensured, it may frighten the users. Our solution will not rely

on streaming the game content to users as we are aiming at

precise response time and highly reactive multiplayer gaming.

Cloud gaming will produce a lot of bandwidth exchanges. A

example of how important can be the bandwidth costs can be

found at [14]. In a context of MMOGs where the bandwidth

is an extremely critical point to broadcast views to players,

a price to pay per bandwidth used could simply make the

company loose at lot of money if they don’t optimize perfectly

their protocol.

Cloud services in their majority are supposed to be reliable

and always on. But a quick check on [15] reveals that nearly

half of them aren’t available a hundred percent of the time,

making them potential unreliable nodes of the network, just

like peers in a P2P network. Therefor, unless the company

have the means to turn towards an expensive cloud service

provider, still needs to add some verification and consensus

protocols to the game. Integrating complex computer science

elements in one of the AAA type of games will only raise its

development cost and potentially insert inconsistency in some

players view if this new mechanism is not fully under control

when the game is released.

That’s why we think that our solution could benefit of the

cloud platform as a possible add-on that will enhance its

performance, but not as the most appropriate solution when

it comes to massive gaming architectures.

Putting all the game content to the cloud will generate too

much bandwidth and need complex algorithms relative to the

reliability and response time regarding the cloud localization

and offers.

Unloading performance to the cloud will still require to

possess a centralized server handling the nodes and will not

resolve the scalability issues of the central point of failure

when the server receives a huge amount of concurrent players.

IV. SYSTEM MODEL AND FAILURE MODEL

System model

We want our system to work on top of a P2P overlay

designed for gaming, such as [16] and [17]. This assumption

on the infrastructure induces our base hypotheses.

A GARDER POUR LA SECTION PERFS - Our simulation

doesn’t comprise a world component, which could be latter

added with an existing P2P overlay for gaming.

Our model focuses on fights between two nodes. We argue

that it is scalable in that it paves the way to handling very large

numbers of one-on-one fights simultaneously. Although this

model could be extended to small sets of nodes fighting co-

operatively (arena-style), it is not suited for large cooperative

battles which require zone control. Current C/S architectures

do not scale well either as the number of opponents involved

in the same battle increases. Our approach opts for strong

protocol protection to show that a distributed approach can

compete with a costly C/S solution.

Every game player in our model possesses a unique game

identifier and associates it with a network node, typically the

computer on which the player is running the game software.

Every node runs the same game engine: the code that de-

fines the world, rules, and protocols of the game. An avatar

represents a player within the game world. Data describing

the dynamic status of the avatar is called the player state; it

is stored locally on the player’s node and replicated on other

peers to prevent its corruption. Every node also maintains both

a list of the player’s immediate neighbors within the virtual

world of the game, and a list of neighbor nodes within the P2P

overlay. In the rest of this paper, we use the term neighborhood

to refer to both lists.

There is no limit on the total number of player nodes

in the system. Player states are stored/replicated on network

nodes and every player node maintains a list of geograph-

ical neighbors. The game downloading phase is considered

complete: all static game content is installed on every node.

All data exchanges are asynchronous. Nodes communicate by

messages only; they do not share any memory.

We assume that all shared data pertaining to the game

and the virtual universe can be accessed in a timely manner.

Systems such as [16], [18], [17] already address this issue.

Both the player and the referee codes and protocols can

be edited by third parties: our approach aims at detecting and

addressing such tampering. The matchmaking system, the part

of the game software that selects opponents for a battle, falls

out of the scope of this paper. Leaving it on a centralized server

would have little or no effect on the overall performance, and

we assume it to be trustworthy.

Failure model

Our distributed approach aims at offering a secure gaming

protocol, so as to detect every corrupted game content that

passes through the network and impacts other players. Our
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goal is to ensure the lowest cheat rate even when possible

failures occur.

The extended classification made by Jeff Yan and Brian

Randell[19] gives a complete overview of the types of cheat

attempts that can happen in a game. Among these types,

current C/S architectures do not detect client-side game cheats

such as automatic repetitive inputs (also called bots). Nor do

they fully resolve other malicious behaviors, such as gold

farming , phishing, client side tools; all of which involve

optimized legal actions within the game. We do not address

these either in the context of this paper. Yet, since our solution

allows free provisioning of computing power and memory,

action/command logs and retroactive checks for patterns asso-

ciated with in-game misbehavior come at virtually no cost.

We want our distributed approach to at least match the de-

gree of protection guaranteed by traditional C/S architectures.

For this purpose our solution addresses all of the following

failures :

• delays or modifications of the communication protocol

• modifications of stored data

• denial of service attacks

• collusions relative to the number of referees per fight

Regarding collusions, we detect a relative ratio correspond-

ing to the number of correct referees we pick per fight. Our

protocol can detect collusions between C nodes as it involves

2 ∗ C − 2 correct referees per fight.

In order to scale, our decentralized architecture requires

trustworthy nodes to act as referees. It is risky to confer

referee statuses indiscriminately, as it provides an easy way

for dishonest nodes to turn the game to their advantage.

Hence our solution relies on the availability of a distributed

reputation system [20] in order to identify the most trustworthy

nodes. Any such system [21], [22] would work, as long as it

collects feedback about node behaviors and computes values

that describe these behaviors.

V. DESIGN OF A DECENTRALIZED REFEREEING SYSTEM

The main goal of our approach is to provide efficient means

for cheat detection in distributed gaming systems. In this paper,

we focus on player versus player fights.

Our cheat detection mechanism relies on the integration of a

large scale monitoring scheme. Every player node participates

to the monitoring of game interactions between its neighbor

nodes. As such, every node takes on the role of game referee.

To avoid collusions among players/referees in order to gain an

unfair advantage, no player should have the ability to select a

referee. For this purpose, our architecture relies on a reputation

system to discriminate honest nodes from dishonest ones. This

allows picking referees among the more trustworthy nodes, as

detailed in subsection V-B.

Once selected throughout the P2P overlay, referees act

as servers/super-peers for the other nodes. Any node in the

network may become a referee, as long as it keeps carrying

out honest transactions. Resources that were required from the

centralized servers in the C/S model are now fully distributed

in the peer to peer network.

A. A generic protocol for refereeing in-game battles

Figure 1 depicts our decentralized refereeing approach.

An initialization phase allows the reputation system to gain

sufficient knowledge for a first estimation of node behaviors.

Afterwards, any node can decide to initiate a battle with any

other node, and asks one or more referees to help arbitrate

the outcome. A battle between two opponents comprises one

or more fights until a victory occurs. During a fight, every

referee monitors the game commands sent by both opponents,

and then decides the outcome of the fight based on the game

data and on the correctness of the commands.

Initialisation

Incorrect nodes are punished by

Incorrect nodes send faked
actions or states

If both nodes are correct,
fight continues

Correct nodes’ reputation values
are raisedlowering their reputation value

Fake fights are launched to test referees and players

Randomly choose ennemies to fight with

Fighting

Fig. 1. Summary of our decentralized refereeing protocol

A classic issue for applications supported by reputation

systems is the startup. In a situation where no transactions have

yet been carried out, it is impossible to identify trustworthy

nodes. The same problem holds for assessing the reliability

of new nodes that join the application. We solve this issue by

hiding fake requests into the flow of legitimate refereeing re-

quests. During the game startup, all requests are fake until the

reputation system estimates it can deliver reliable reputation

values. Subsection VI-C details this mechanism.

When the reputation system is ready, players can initiate

“real” battles under the supervision of one or more referees.

Once a battle has been initiated, the opponent nodes can

create events they send to referees. Those events are based

on the current player states. There are two types of events :

actions describing inputs and states containing player states.

In our model, a cheater is a player node which either (a)

makes up an event which does not match its state according

to the game engine, or (b) delays the emission of an event.

Upon receiving an event from a player, a referee checks

if the event is valid before transferring it to the player’s

opponent. Events are thus exchanged between two opponents

under the supervision of one or more referees,until the battle

ends. Three possible conditions lead to the end of a battle :

one of the player health goes to 0, one or two of the players

are cheating or both players agrees to stop fighting to call it a

draw. If a cheater attempts to declare itself a winner illegally,

both the referees and the opponent will detect the attempt.

B. Referee selection

In order to optimize cheat detection, our system picks

referees among the trustworthy nodes that belong to the

neighborhood of the player nodes. As described in Section VI,
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trustworthy nodes are those whose reputation is above a fixed

threshold T . A node A will only consider another node B as

a potential referee if the reputation value associated with B as

a referee increases above T . Self-refereeing is prohibited for

obvious reasons: therefore player nodes are excluded from the

referee selection for battles they are involved in.

We designed our referee selection mechanism to reduce the

control any single node can have over fight outcomes. In other

words, a single player node will have a low probability of

managing to impose referee nodes. To achieve this goal, two

player nodes involved in a battle must agree on the selection

of referees. The player that initiates the battle first searches for

available referees and books them for a fight. The player will

then suggest this list of referees to its opponent. The opponent

then double checks that those referees are trustworthy. A node

that makes a lot of incorrect selections will quickly go down

in the node reputation values, thus leading to its detection and

possible exclusion from the system.

Even though sending constant fake referees list could disturb

users game experience, the system will reduce the reputation

value of the attackers in less than a minute, become resistant

to this attack, and will automatically absorb it. We scale here

way better than a centralized server who sometimes even needs

a full shutdown of the platform.

Since reputation values are dynamic, it is possible for a

referee to lose its trustworthiness in the middle of a battle.

In this case, the battle is canceled: all refereeing requests

associated with the corrupt referee are tagged as fakes and

will only be used as information for the reputation system.

C. Cheat detection

Every fight constitutes an event which one of the opponents

may try to corrupt to his advantage. Our refereeing system

verifies events as follows.

Any player node can create events based on the game

engine. In order to change the state of its avatar, a player node

must issue a refereeing request containing an event description.

Upon receiving two descriptions associated with the same

event –one for each opponent–, a referee will use the game

engine to verify:

• the initial state and its consistency with the replicas stored

in the P2P overlay;

• every action, to assess whether it is coherent with the

player state;

• the new state of every opponent, to ensure that the actions

got applied;

• victory announcements if any, to prevent the most obvious

cheating attempts.

A battle triggers a loop of verifications on the referee

(Figure 2); one verification per fight, until a victory occurs

or until the battle gets cancelled.

Referees for a same battle send their decisions back to

the player nodes directly; they don’t communicate to reach

a consensus. This does not introduce a breach in our security,

as we can detect incorrect players while they try to cheat

on decisions. Our architecture systematically detects cheating

attempts, whether they come from a malicious player or from

Fig. 2. Referee automaton used to analyze a full fight.

a malicious referee. If one of several referees sends a wrong

decision to the players, the players will detect the inconsis-

tency. If an incorrect player decides to take into account the

wrong decision, correct referees will detect an incorrect player

state at the next iteration. Finally, if a wrong decision turns an

incorrect node into a victory, and if the incorrect node omits

to send a message to claim its victory, both its opponent and

the referees will eventually consider it as malicious.

D. Multiplying referees to improve cheat detection

One referee isn’t enough to ensure that our approach is

sufficiently cheat-proof. A malicious node can temporarily

send correct responses to gain a good reputation, and then

issue corrupt decisions if it manages to acquire a legitimate

referee status. Associating more than one referee with the same

battle counters such behaviors.

Our solution enables players to select N referees for the

same battle, with N an odd number. Once they have agreed

on the referee selection, the players submit their requests

concurrently to every referee. A player that receives N

2 + 1
identical replies may consider the result as trustworthy.

This approach has important advantages. It strengthens the

trustworthiness of the arbitration, since the probability of

picking N

2 malicious referees at the same time is considerably

lower than that of selecting a single malicious referee. At

the same time, it improves the detection of both malicious

players and malicious referees and helps preventing collusions

between a player and a referee. Collusion is a costly strategy,

and the cost grows exponentially with the number of nodes

involved. This is even truer with our approach since:

• a player alone cannot influence the selection of the

referees,

• colluders must first work to obtain good reputations

before starting to cheat,

• and a node can never know whether it is handling a

legitimate or a fake refereeing request.

We analyzed the impact of the number of referees on the

efficiency of the cheat detection and on the overhead. The

results of this analysis, along with other results, are presented

in section VII.

Collusion is only avoided when a majority of the referees

given for a fight are correct. This implies that the referees
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Fig. 3. N -referee configuration

aren’t part of the collusion . Therefor it allows us to detect

when there is less or equal than N

2 + 1 colluding nodes, N

being the number of referees, by simply checking most popular

decision of referees. As an example, with 3 referees we can

only detect collusions of two node, be they player nodes or

referee. Our refereeing system ensures that every possible

combination of colluding nodes will result in a detection of

this behavior. No possible configuration will allow to undergo

an illegal action as long as we have a majority of correct

referees.

VI. IMPROVEMENT OF THE REFEREEING SYSTEM

THROUGH REPUTATION

In order to scale, our decentralized architecture requires

nodes to act as referees. It is risky to confer the referee status

to every node indiscriminately, as it provides an easy way for

dishonest nodes to turn the game to their advantage. Therefore

our approach requires a way to pick out nodes that are reliable

enough to act as referees.

Our solution integrates a distributed reputation system to

identify the most trustworthy nodes. A reputation system [20]

aims to collect and compute feedback about node behaviors.

Feedback is subjective and obtained from past interactions be-

tween nodes, yet gathering feedback about all the interactions

associated with one node produces a relatively precise opinion

about its behavior in the network. In our case, this allows

detecting players that cheat and to avoid potentially malicious

referees.

There are two levels of trustworthiness for every node: as

a player within the game (player reputation), and as a referee

for the game (referee reputation). We dissociate both levels

entirely as a node can play the game honestly while spreading

incorrect information about other nodes, and vice versa. We

use the former to decrease overheads (see Subsection VI-D),

and the latter to establish a list of reliable referees before

submitting requests for arbitration.

A. Assessment of the reputation

Every node stores a local estimation of the player reputation

and of the referee reputation associated with every node in its

neighborhood. Given our failure model, it makes no sense to

fully trust a remote node, and therefore a reputation value can

never equal the maximum value to translate this behavior in

our simulation. In our system, a reputation value belongs to

[0, 1000[ . Value 0 represents a node which cannot be trusted,

whereas the reputation value of a very trustworthy node

approaches the unreachable 1000. Initially, when assessing a

node that has no known history as a player (respectively as a

referee), its player reputation (resp. referee reputation) value

is set to 0.

There are two types of direct interaction between nodes

that lead to a reputation assessment. A refereeing request

causes the referee node to assess the player reputation of the

requester, and the player node to assess the referee reputation

of the requestee. The referee selection process triggers a

mutual player reputation assessment between nodes.

Every time a node interacts with another node, both nodes

assess the outcome of the interaction and update their local

value for the reputation of their counterpart. A valid outcome

increases this value (reward), while an incorrect outcome

will decrease it (punishment). In our case, punishments

must always have a greater impact on the reputation value

than rewards. This prevents occasional cheaters from working

their way to a good reputation value, which in turn confers

an advantageous position for avoiding cheat detection or for

acquiring referee status.

Evaluating a reputation through direct interactions only is

a bad idea. Firstly it means that, in order to consolidate

its reputation assessment, every single node must carry out

multiple transactions with all the others: it is costly both in

terms of time and resources. Secondly a malicious node may

act honestly with a restricted set of nodes in order to escape

banishment from the game if it gets detected by other nodes.

In our solution, nodes exchange their reputation assessments

to help build a common view of their neighborhood in terms of

player/referee trustworthiness. They exchange this reputation

values in a sporadic manner. For reputation values that will

imply a diminution it is sent as soon as possible as those

information are resulted from an incorrect behavior. In the

opposite way, if it is an increase the message will be emitted

in the end of fight. We delay this message not only to save

bandwidth, but also to make sure we are not raising the

reputation of a node that still have the possibility to cheat

during this fight.

Figure 4 gives an example of the way reputation assessments

get propagated among nodes. Node O(ther) starts interacting

with node R(eferee) to get information about a node he will

soon fight. It so happens that node R is currently refereeing

a battle between nodes M(alicious) and G(ood), and has

therefore assessed their reputations. Node R piggybacks its

assessments on its messages to node O.
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Fig. 4. Global reputation assessment in the network

The indirect reputation assessment of a node A by another

node B generally relies on three types of information:

1) the current reputation value that B associates with A,

2) the evolution of the behavior of A as perceived by B,

3) and the recent opinions that B or other nodes may

express about A.

Upon receiving fresh data about the behavior of a

node, reputation systems such as TrustGuard [23] use a

PID (proportional-integral-derivative) formula on these three

pieces of information to compute a new reputation value. The

principle of a PID formula is to carry out a weighted sum

of the local reputation value at t − 1, of the integral of the

local reputation values since the system startup, and of the

differential with newly received reputation values:

R(t+ 1) = α ∗R(t) + β ∗ 1
t
∗
∫
t

0
R(t) dt+ γ ∗ d

dt
∗R(t)

The values for parameters α, β and γ are totally dependent

on the application. A high value for α will confer a greater

importance to past reputation values stored locally. This is

useful in systems where close neighbors cannot be trusted.

Parameter β focuses on the consistency of the behavior of a

node. Systems with a high value for β prevent malicious nodes

from wiping their slate clean with a few honest transactions.

Finally, parameter γ reflects the transitivity of the reputation,

in other words the direct impact of a new opinion on the local

assessment. A high value for γ implies that the local reputation

value of a node will be more sensitive to new values expressed

locally or by other nodes.

Our reputation system simplifies this computational model

to facilitate its implementation. We achieve this simplification

by transforming the full model into an arithmetic progression.

Let I(t) be the value of the integral at time t, D(t) the value of

the differential at time t, and a(t) a reputation value received

from another node at time t.

Our first transformation is to reduce the integral to an

iterative average:

I(t) = (I(t−1)+a(t))
2

This transformation adds a fading factor to the past behavior

of the evaluated node. This is fine, as most reputation systems

introduce a similar factor to increase the impact of the recent

behavior, and therefore to be more responsive to sudden

changes in the behaviour of the evaluated node.

Our second transformation reduces the derivative to a dif-

ference between two values:

D(t) = (a(t)−R(t))

Here also the transformation suits the requirements of our

cheat detection: we estimate that it is more important to detect

potentially malicious nodes than to identify trustworthy nodes.

The new formula for D(t) causes every transaction to impact

strongly on the reputation value. Since the reputation value is

reset to 0 periodically (see Subsection VI-B), R(t) is more

likely to remain low with every dishonest game action than to

converge towards a high value with successive honest actions.

In our case, we estimate that it is more important to detect

potentially malicious nodes than to identify trustworthy nodes.

The computation for R(t) in our implementation thus breaks

down to:

R(t+ 1) = α ∗R(t) + β ∗ (I(t−1)+a(t))
2 + γ ∗ (a(t)−R(t))

B. Parameters associated with our reputation system

Several parameters associated with our reputation system

allow to adapt it to the requirements of the application.

Setting the parameter values is closely related to player/referee

behaviors that are bound to be specific to every game. Hence

the finetuning of these values requires extensive benchmarking

during the test phase of the game software. Nevertheless, in

this Subsection we provide pointers for the parameterization

of the reputation system.

The first obvious set of parameters α, β, γ characterizes

every reputation assessment. As mentioned earlier, in the

context of cheat detection we believe the system should focus

on its reactivity to incorrect actions. As the main component

of the formula for this purpose, γ ought to be set to a high

value.

Values υ (up) and δ (down) correspond respectively to

rewards and punishments. As mentioned earlier, setting δ

significantly superior to υ discourages malicious behaviors and

prevents the promotion of corrupt nodes to referee status.

Every local reputation value associated with neighboring

nodes is reset after every ρ updates; ρ is a parameter of the

game code, as it depends on the robustness of the game design.

This reset strategy helps prevent dishonest nodes from earning

a good reputation, and at the same time protects honest nodes

from bad recommendations spread by dishonest nodes.

We determine whether a node acts honestly by enforcing

a global threshold T on reputation values. This threshold has

two main uses in our solution:

• it serves as the main metric for the referee selection

mechanism described in Subsection V-B,

• and it allows reducing the CPU load by randomly

skipping refereeing requests from reputable nodes, as

described in Subsection VI-D.

Similarly to ρ, the value of T is highly dependent on the

game design; it must be set to the best trade-off between



8

cheat detection and efficiency. If the game software designers

expect a proportion of cheaters that is either extremely high or

extremely low, then the threshold value must be set very high.

Indeed in such cases the reputation of incorrect nodes will

be close to that of correct nodes, and cheaters will be harder

to detect. Therefore a high threshold value will ensure that

fewer malicious nodes will slip through our cheat detection.

Conversely, a system that encounters a moderate proportion of

cheaters will witness the emergence of two distinct reputation

value averages among nodes : one average for honest nodes

and another average for dishonest ones. The threshold becomes

easier to set, as its value can be chosen somewhere between

both averages. In general terms, the threshold value is inversely

proportional to the distance between the number of cheaters

in the system and half the size of the network.

C. Fake testing and jump start

Identifying trustworthy nodes is particularly tricky in two

specific situations:

1) during the game startup,

2) and when a new node joins the application.

In both cases, reliable reputation values cannot be assessed for

lack of transactions allowing to study node behaviors.

We solve this issue by integrating both fake testing and an

initialization phase.

Fake testing consists in hiding fake requests into the flow

of legitimate refereeing requests.

The hiding process is simple : we do not produce anything

different than an usual fight will produce. When two nodes

searches for a referee to make their fight, if no referee is

available they are going to make the same referee selection

once more, but this time to test the referee. A test is launched

by the nodes when the referee to test is picked. At this moment

the nodes will simply launch a request to the referee as if they

were starting a normal fight. During the duration of the fake

fight, the testing protocol will always vary to not make it easy

to recognize but follow those rules :

• send incorrect and correct actions/states

• verify the referee answers to the actions/states

• keep the ratio correct/incorrect events high enough

• never send too much incorrect actions in a row

Those four points are kept repeatedly until the referee

reputation value is changed enough to take one of two possible

decisions : launch a real fight with this referee or broadcast

that this referee is confirmed as incorrect.

It is important to note that in this way to test referees

we are totally undetectable from the referee, but we will

undergo some modifications of the nodes reputation values

as the referee will think players are cheating. This is the main

reason why a node will never send too many incorrect actions

during a test : avoiding to have the reputation value resettled

to 0.

In the end of the test , both nodes will send a confirmation

to the referee that they both want to cancel the fight. Being

able to forfeit/surrender is a possible procedure in all games.

Here we use it also to put an undetectable end to a test than

the referee had no chance to identify.

Even though one could argue that there is a strong chance to

be tested when we are entering the system,and then use this

information to abuse the system to raise its own reputation

value, it is important to remember that in our system there

is never a state of total trust. The trust will fall the instant

a correct node will detect it has been included in a fight

with corrupted referees. Moreover the fake testing accelerates

the reputation assessment among nodes, and also discourages

cheating attempts: tampering is already risky, why try it for

potentially no benefit if our reputation value will be destroyed

later?

New nodes start with an initialization phase where they

only send out fake requests to their neighbor nodes. A node

ends its initialization phase as soon as it has identified enough

potential referees to start a fight – the minimum number of

referees required for a fight is discussed in Section VII. The

initialization phase has a very negative impact on the player

reputation of the node as it sends both correct and incorrect

commands to test for potential referees.

This procedure of hidden testing will continue for all game

long. Frequently when searching for the best referees possible

in their neighbors the nodes will find busy referees, and

therefor they need to test again the other referees in decreasing

order of reputation value.

Note that we are not forced to then test only bad referees

when we pick one of the referee in the list of untrustworthy

referees. As an example, an incorrect referee might just have

been targeted by someone who wanted to lower its reputation,

or simply had a spike of latency during a fight, producing

incorrect behavior in the point of views of the players. Tests

are therefor always useful during the full game run time.

D. Reducing the overhead induced by the cheat detection

Refereeing is a costly mechanism in terms of CPU and

network usage. In order to reduce these costs, C/S architectures

introduce heuristics aimed towards skipping some refereeing

requests. Our solution allows extending this idea by identifying

situations where skipping requests is more logical, that is when

the request comes from a node with a good player reputation.

We propose the following formula to decide how often

refereeing requests can be skipped:

SkipRatio = (R−T )
(V−T+1)

With R the reputation value of the requesting node, T the

threshold value and V the maximum reputation value in the

system.

SkipRatio will increase as the reputation value of the

requesting node gets closer to the maximum value. We intro-

duce the threshold to guarantee that requests from trustworthy

players are the only ones that get skipped. We added the

plus one to the denominator in order to ensure that even the

most trustworthy node requests get tested once in a while. As

reputation values grow very slowly, a node can only get to this

point if it has acted honestly towards a significant number of

other nodes for a long time.
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E. Portability of our solution to other reputation systems

In terms of reputation assessment, the requirements of our

refereeing architecture are very basic. We need every node to

store subjective values about the behavior of the other nodes

in their neighborhood. With this in mind, we designed our

own reputation system because it was simpler to prototype it

quickly and integrate it into our simulations. But really, any

other reputation system with similar characteristics [21], [22]

would do.

VII. PERFORMANCE EVALUATION

The present Section details the results of the performance

evaluation we conducted in order to check the scalability

and efficiency of our solution. We base our evaluation on

simulations in order be able to analyze the behavior of our

system when thousands of nodes are involved.

Our distributed refereeing system aims at offering a stronger

alternative to the C/S architecture in the MMOG context. To

prove that our approach is worthwhile, the overhead generated

by our solution must be kept low in order to allow scalability

and to offer a user experience that is indistinguishable from

classic C/S performances. Obviously, we also expect our

solution to detect the highest possible number of cheating

attempts.

A. Simulation setup and parameters

Our performance evaluation is based on the discrete event

simulation engine of PeerSim [24].

The virtual world management fall out of scope from this

paper as we will plug ourselves on a P2P gaming overlay

later on. In peersim, we implemented nodes as if they were

linked to other nodes in a similar manner as in real games,

changing the links randomly. We respected a distribution of

heavy density zones with a lot of neighbors, and lower density

zones with only few nodes in neighborhoods.

Players, have states generated accordingly to what you could

find in a normal MMORPG game. They are all different, and

their levels differs, producing some quick and longer battles

depending of the two players facing each other. They evolve

for now in an infinite world, in which if they want to fight a

probe request to the neighborhood will be sent to see which

node is available. In our simulation players interact with other

nodes from their neighborhood around every fight minutes for

a fight of an average duration of around two and a half minutes.

Fights related messages are sent when a player emit an

input. Inputs are considered to be polled 25 times per second,

to respect a decent frame rate. Other messages such as testing

messages and reputation messages are sporadic and are sent

as soon as possible. We determine that reputation messages

are sent when :

• an end of fight happened without incorrect actions

• a node tried to input too much incorrect actions

To avoid also cyclic behaviors that could have been cre-

ated by producing fights every five minutes, we added some

skewness in all the values of inactive state, fighting state,

inputs, etc... making every node different from the others and

desynchronized.

This world we described evolves in peersim, generated with

random seeds given by peersim at each simulation that will

produce the player random states. Every run simulates game

interactions among 30,000 nodes over a 24-hour period. Every

measure presented hereafter is a mean value computed with

results from 40 different simulation runs. We performed our

simulations on a Dual-CPU Intel Xeon X5690 running Debian

wheezy v3.2.0-4 at 3.47Ghz, with 128GB of available memory.

Every run generated an average of 24 CPU threads.

In order to find appropriate values for the parameters of

our reputation system, we ran several simulations prior to the

ones presented in this Section. We found the optimal parameter

setting to be as follows: threshold T = 300, reset frequency

ρ = 50, α = 0.2, β = 0.2, and γ = 0.8. γ is much higher than

α and β because we want the detection mechanism to focus on

quick reactions to the strong punishments that incorrect nodes

can receive.

The punishment δ and reward υ have specific behaviors in

our reputation system. δ aims at making nodes to converge to

50 of reputation value when small errors are detected to warn

the node.

We considered this value of 50 after studying in each of

our multiple simulations what was the average reputation

value an untrustworthy node can achieve in our system. An

untrustworthy node for example can be a node that used to

behave correctly since a while but suddenly decided to send

some cheat attempts.

In a second step, if nodes insist in cheating, the reputation

value of the incorrect node will quickly reach the minimum

value.

In the same manner , υ is used to make nodes converge

slowly to the maximum value. A node inferior to 500 reputa-

tion value will be raised until it reaches it, then will aim for

1000.

We set the concurrent number of nodes in our system to

the largest value our simulator could handle while running on

our hardware: 30,000 nodes. It still is twenty times as big

as the unofficial client/server concurrent limit we identified

through various Internet sources[5], [4]. We also ran some

short simulations with up to 60,000 nodes, and observed

no difference in the behavior of our system. Actually, our

approach seems to behave independently from the number of

nodes in the network.

The metrics we used to assess the scalability and efficiency

of our system are:

• the latency,

• the network bandwidth consumption,

• and the CPU overhead introduced by our architecture,

• as well as the percentage of undetected cheating occur-

rences.

B. Latency

We introduced a uniformly random latency for every ex-

change between two nodes. The lower and upper bounds are

set to 10 and 40 ms respectively. We estimated these values by

monitoring the traffic we generated while playing Guild Wars

2.
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We also have a database containing pings from users of a

famous nowadays online game, League of Legends. We found

that the average ping of users was around 40ms. We decided

that between two peers we simply double the value, reaching

around 80ms ping, which makes us 40ms latency on messages.

The justification behind this reasoning is that once a client can

reach a high response server in 40ms ping, there is in average

the same time then to go down on an other node. The slowest

part of the two between the servers of League of Legends and

the client is obviously the client’s internet access which then

accounts for a majority of the ping response time.

We also tried to see and verify that our assumption was

correct and we sent pings requests between two different

houses with standard ADSL2+ connections and managed to

get the same latency results as we estimated.

In our solution, results show that we add a latency com-

parable to that of a single message exchange between two

nodes in our network: 40ms. This comes from the two way

communication we impose between referees and peers. Even

if we consider a (very) slow network with a 100ms average

latency, the 200ms latency introduced by our system remains

affordable in the context of MMORPGs.

C. Bandwidth consumption

Similarly to latency, we evaluated the bandwidth consump-

tion of our solution per message. We kept count of the

number and the size of all the messages exchanged during

every simulation run. With these logs, we correlated message

contents and real memory usage of data such as integers or

floats in classic games to compute realistic message sizes.

To compute the message size, we summed up everything

we were sending in the network. There are two cases :

• state messages

• action messages

State messages in our scenario will send all the game related

information it knows about himself. This contains 84 bytes

when serialized before being sent on the network.

Actions messages are a bit smaller, they only send the

difference of what the player will do compared to his state, all

the non sent data is kept unchanged when receiving an action

message. The actions messages contains only 16 bytes when

serialized and sent to the network.

State and action messages are sent step by step in the

network according to the automaton shown in Figure 2,giving

an even amount of both. Knowing the size of the message we

only had to count them to then deduce the bandwidth used on

a single node over time.

As shown in Figure 5, we measured that each node in

our solution consumes a mean of 4KB/s once the system

has stabilized. Given that the maximum consumption never

exceeds 8KB/s, we consider these results to be excellent.

We also performed a theoretical comparison between our

approach and the client/server approach. For this purpose,

we defined a virtual centralized server as a computer with

unlimited resources, able of handling all concurrent requests

without crashing. We then summed up the average workloads

handled by every peer in our distributed solution during the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  5  10  15  20  25

b
a
n
d
w

it
h
 o

f 
a
 p

e
e
r 

in
 k

B
/s

time in hours
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simulation runs, divide it by the number of referees we

run in the decentralized version,and fed them to the virtual

centralized server. Figure 6 shows that the consumption peak

in the client/server architecture reaches 67MB/s. With this load

in a real game deployment, the server would crash and the

players would be disconnected. Such situations occur pretty

frequently with existing games nowadays. A cluster of server

might be able to handle this direct overload, but then comes

the need to put in place a complex coordination and consensus

algorithm between the servers. Which for now we saw no

reference of games companies being able to put this kind of

technology at work.
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Our approach is based on a reputation system: its ranking

provides the ability to pick out trusted referees. We checked

how much bandwidth our own in-built reputation mechanism

uses in those 4KB/s. It appears that, compared to the real size

of the game protocol messages, it uses only around 1.5% of

all network data sent (as illustrated by Figure 7).

Reputation messages are sent only when needed, as we

really took care about this part of the reputation system, and

they also are small. They share roughly the same size as the

action messages and weight 16 bytes, they contain a descriptor

of a node, and the new reputation value we want to share for

this node.
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D. CPU load

To estimate the CPU overhead introduced by our refereeing

system, we assigned 1 ” cpu load point” to every action/state

creation (cpu usage associated with the game software) and to

every action/state test (cpu usage induced by our approach).

Please note that this method inevitably leads to an overesti-

mation of the overhead induced by our approach. In a real

implementation the CPU usage associated with tests is really

small compared to the other CPU dependent operations a game

can produce, such as Nvidia PhysX or artificial intelligence

computations.

Number of referees One Three Five

CPU overhead 27,85% 64,59% 210,56%
TABLE I

CPU OVERHEADS

We computed the values of the CPU overhead, and display

the results in Table I. Obviously, our CPU overhead is closely

related to the number of referees per battle. In spite of our test

skipping optimization, the 5 referees per battle configuration

induces a prohibitive overhead. Considering that most current

games requires a dual CPU core, a 100% CPU overhead on

a quad-core processor seems an acceptable maximum. Once

again, those values are vastly overestimated.

We also aims at types of game that we could check on

personal machines which are average in terms of gaming

CPUs, whose showed that they mainly use roughly 50% of the

quad-cores and nearly fully the dual-cores. Multiplayer online

battle arenas such as League of Legends, Dota2, Bloodline

champions all ran perfectly when bound to only one or two

cores. MMORPGs like Tera online, Rift ran also without issues

when placed on 2 cores only. Only the recent Guild Wars 2

showed some different frame rates when bound to 2 cores only

as the game can produce a CPU bottleneck with some of the

Extreme graphics options. As the graphics are extremely rich,

CPUs are highly stressed by the quantity of information to

send to the GPU.

E. Cheat detection ratio

With respect to cheat detection, since there are no available

statistics on the number of cheating occurrences that go

undetected in the gaming industry, we have nothing to compare

ourselves with. Therefore we set the percentage and distri-

bution of incorrect nodes arbitrarily, while trying to remain

realistic with respect to both our own gaming experiences and

the literature on byzantine behaviors in P2P networks.

For instance, we believe there are diverse malicious behav-

iors in the context of gaming. A person using the service may

want to cheat as a player, but may not want to disturb other

players. Conversely some attackers only focus on damaging

the system and do not care to play at all. The distinction

between player reputation and referee reputation reflects this

analysis: it implies that the player component and the referee

component on a single node can behave independently from

one another.

In the literature about reputation systems[23], 5% is often

a higher proportion of incorrect/malicious nodes compared to

what is commonly considered. We chose to stretch this value

even further: we set the proportion of potentially malicious

players to 30% and the proportion of potentially malicious

referees to 10%. The latter is lower than the former because

a lack of reputable referees has a perverse effect on the

simulation: it decreases substantially the number of battles

that can proceed, and hence the overall number of cheating

attempts.
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To study the impact of the proportion of incorrect referees

on the quality of the cheat detection in our solution, we

initially ran simulations with a proportion of incorrect referees

varying between 0% and 45%. Figure 8 illustrates the rapid

decrease in the number of battles per day that such a variation

brings. We believe that 10% of incorrect referees remains a

high value anyway, probably above the proportion any real

game faces.

Despite this negative outcome our simulation results shown

in table II demonstrate that, regardless of the number of

battles that do proceed, the proportion of undetected cheating

occurences always remains stable under 0,013% with three or
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Number of referees One Three Five

Cheat percentage 1,17% 0,0128% 0,0099%
TABLE II

UNDETECTED CHEAT RATIO

more referees per battle. In our opinion, this shows that our

solution is effective for detecting and avoiding both incorrect

referees and incorrect players.

In table III, we correlate the measures from tables II and I

to obtain the CPU overhead relatively to the percentage of

cheating attempts that went undetected. The results show that

our ”many-referees” configurations are CPU cost efficient

compared to the single referee one, especially the 3 referee

configuration.

Number of referees One Three Five

CPU overhead

for relative 1% 32,6625% 0,83% 2,10%

cheat undetected
TABLE III

CPU OVERHEAD RELATIVE TO UNDETECTED CHEAT

VIII. RELATED WORK

There has been significant research on P2P overlays for

online games. Several approaches, such as Colyseus [25],

BlueBanana [26], and Solipsis [17], aim to adapt the positions

of the nodes in the network to the needs of the applications.

This makes them suitable for MMOGs. Colyseus is effi-

cient enough to support FPS games. MMORPGs have lower

update rates and have much smaller per-player bandwidth

requirements than FPS games [27]. BlueBanana and Solipsis

adapt the network overlay to the movements of the avatars.

Unfortunately none of these approaches address the issue of

cheating.

To deal with this open issue, [16], [28], [29], and [30]

propose distributed cheat detection mechanisms. In [16] and

[28] the authors use trusted entities to handle security, and in

[30] super-peers are used as proxies for the overall security,

while in [29] zones are created where every player asses other

players actions. They gather all the information required to

create a decentralized and secure approach for MMOGs, and

introduce the concept of distributed refereeing into the P2P

network so as to implant trusted entities. Since every action

in a game can be discretized into small events, the analysis

and arbitration of actions received from the game clients are

delegated to those entities.

These solutions introduce the basic mechanisms for fully

decentralized P2P gaming. However they do not tolerate a high

number of incorrect nodes. Note that our approach is quite

similar to RACS [28]. However, RACS limits the arbitration

to a single referee. It deals neither with cooperations amongst

multiple referees, nor with the selection of trusted referees.

Another type of approach is to mix the benefit of P2P

load balancing with a centralized server, as does [30]. Such

hybrid approaches also need to identify trusted nodes in the

network in order to delegate arbitration tasks. Although this

helps the server when it comes to handle a lot of CPU

heavy operations, the maximum number of concurrent players

will remain bounded, and orders of magnitude below the

requirements of MMOGs.

Our solution can make use of any fully decentralized

reputation system to identify potential referees. It relies neither

on region controllers nor on chosen nodes of the overlay.

Moreover our approach delegates every arbitration to multiple

referees. As our simulations show, this allows to enforce an

efficient cheat detection without hindering scalability.

IX. CONCLUSION AND FUTURE WORKS

The scalability of massively multiplayer online games is a

hot issue in the gaming industry. MMOGs built on top of

fully decentralized P2P architectures could scale. However

they would face a major problem: the impossibility of im-

plementing a distributed refereeing authority that can be fully

trusted.

In this paper, we propose a probabilistic solution based on a

reputation system. It tests the behavior of nodes by submitting

fake refereeing requests and then picks out those it identifies

as trustworthy to referee real game actions. To improve the

detection of dishonest arbitrations by malicious referees, every

request can be submitted to multiple referees concurrently.

The first step we took towards validating our solution was to

run simulations to test whether it is viable when thousands of

nodes are involved. We included the simulation results in this

paper and showed that it is possible to provide an efficient anti-

cheat mechanism in large-scale peer to peer MMOGs without

degrading their scalability. In a game involving 30,000 players,

our solution manages to leave as little as 0,0128% of cheat

undetected despite a cumulative proportion of 40% of incorrect

nodes. In this context, its maximum bandwidth consumption

never exceeds 7KB/s. This can be compared to the unrealistic

40MB/s that a central server would consume if it were to

handle as many nodes as our solution does.

We are now working on the second step towards validating

our solution: the implementation of a proper prototype and

its deployment. We are integrating enhancements to its design

that limit even further the number of tests when the system

is stable, so as to improve CPU usage without degrading the

accuracy of the detection. At the time of writing this paper,

our implementation is still being tested.

We are also working on coupling our solution with a

matchmaking system. Matchmaking systems connect players

together for online play sessions. We have yet to encounter

a matchmaking system that scales and responds in a timely

manner, and we believe our approach is very well suited for

such a functionality.

Finally, we plan to extend our approach to other kinds

of cheating, for example when players perform legal actions

but still behave maliciously within the game. For instance,

goldfarming consists in gathering virtual resources in order

to sell them for profit in the real world; it is a source of

intense frustration for MMORPG players. We are exploring the

notion of using the multi-agent paradigm to solve this issue.

Agent-based systems are good at representing and monitoring
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complex behaviors and rich interactions between nodes. One

such system could spot abnormal behaviors linked to stolen

accounts and goldfarming. Additionally it could participate

to the removal and replacement of bad referees after their

detection.
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